Miniature Spectrographs: Characterization of Arrayed Waveguide Gratings for Astronomy
نویسندگان
چکیده
We present results from a laboratory characterization of integrated photonic arrayed-waveguide grating chips, which are a modified version of commercial arrayed-waveguide grating multiplexors, for the purposes of creating an integrated photonic spectrograph. Using a robust probing setup we measure the peak total efficiency of the chips to be ~75%. We measure the spectral resolution full-width half maximum to be 0.22 ± 0.02 nm, (giving R = λ/δλ = 7000 ± 700 at 1500 nm). For our device we find the free-spectral range is ~60 nm and slightly larger than the full-width half-maximum of the efficiency profile (53 nm). Finally, we briefly discuss the importance of an integrated cross-dispersion component for the new integrated photonic spectrograph prototype.
منابع مشابه
Miniature astronomical spectrographs using arrayed-waveguide gratings: capabilities and limitations
The size of the optical elements (gratings, mirrors, lenses) in traditional astronomical spectrographs scales with telescope diameter (unless the instrument is operating at the diffraction limit). For large telescopes, this leads to spectrographs of enormous size and implied cost. The integrated photonic spectrograph offers the potential to break this scaling law and allow massively multiplexed...
متن کاملHigh-Resolution Arrayed-Waveguide-Gratings in Astronomy: Design and Fabrication Challenges
A comprehensive design of a folded-architecture arrayed-waveguide-grating (AWG)-device, targeted at applications as integrated photonic spectrographs (IPS) in near-infrared astronomy, is presented. The AWG structure is designed for the astronomical H-band (1500 nm–1800 nm) with a theoretical maximum resolving power R = 60,000 at 1630 nm. The geometry of the device is optimized for a compact str...
متن کاملDesign of Arrayed Waveguide Grating based Optical Switch for High Speed Optical Networks
This paper demonstrates the design of an Arrayed Waveguide Gratings (AWG) based optical switch. In the design both physical and network layer analysis is performed. The physical layer power and noise analysis is done to obtain Bit Error Rate (BER). This has been found that at the higher bit rates, BER is not affected with number of buffer modules. Network layer analysis is done to obtain perfor...
متن کاملArrayed Waveguide Gratings and Their Application Using Super-High-Delta Silica-Based Planar Lightwave Circuit Technology
This paper reviews our recent progress on arrayed waveguide gratings (AWGs) using super-high-Δ silica-based planar lightwave circuit (PLC) technology and their application to integrated optical devices. Factors affecting the chip size of AWGs and the impact of increasing relative index difference Δ on the chip size are investigated, and the fabrication result of a compact athermal AWG using 2.5...
متن کاملDesign of Optical Demultiplexer using Arrayed Waveguide Grating
Optical demultiplexers are used to receive multiple frequency signal from an optical fiber and to split it into its different frequency components. Arrayed waveguide gratings can be used to design an optical demultiplexer and works on the principle of interferometry. This paper presents the design of optical demultiplexer for an optical signal composed of eight frequency components. Simulation ...
متن کامل